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Abstract. For any n < ω we construct an infinite (n+ 1)-generated Heyting
algebra whose n-generated subalgebras are of cardinality ≤ mn for some pos-

itive integer mn. From this we conclude that for every n < ω there exists a
variety of Heyting algebras which contains an infinite (n+ 1)-generated alge-

bra, but which contains only finite n-generated algebras. For the case n = 2

this provides a negative answer to a question posed by G. Bezhanishvili and
R. Grigolia in [bezhanishvili2005locally].

1. Introduction

A Heyting algebra (H,∧,∨,→, 0, 1) is a bounded distributive lattice with a binary
operation → such that

a ∧ b ≤ c⇐⇒ a ≤ b→ c,

for every a, b, c ∈ H [BaDw74, ChZa97, esakia, RaSi70]. Heyting algebras
appear naturally in many areas of mathematics. For instance, the lattice of open
sets of a topological space forms a Heyting algebra. The subobject classifier of a
topos can also be endowed with the structure of a Heyting algebra. Lastly, every
distributive algebraic lattice is a Heyting algebra.

In this paper, we will focus on finitely generated Heyting algebras. We recall that
an algebra A is said to be n-generated when there is a subset X ⊆ A of size ≤ n
such that the least subalgebra of A containing X is A itself. Accordingly, we say
that A is finitely generated when it is n-generated for some n < ω. A class of similar
algebras that can be axiomatised by (universally quantified) equations is called a
variety. Examples of varieties include the class of all Heyting algebras, as well as
that of all Boolean algebras. A variety is said to be n-finite when its n-generated
members are finite, and locally finite when it is n-finite for every n < ω. We call a
variety strictly n-finite if it is n-finite, but not (n+ 1)-finite.

Dual characterisations of finitely generated Heyting algebras were obtained in
[esakia1977criterion] (see also [bezhanishvili2006lattices]), while locally finite
varieties of Heyting algebras were studied by G. Bezhanishvili and R. Grigolia in
[bezhanishvili2005locally]. In the same paper, they raise the following question
[bezhanishvili2005locally]: is it true that a variety of Heyting algebras is locally
finite iff it is 2-finite? While this holds in the restrictive context of varieties of
Heyting algebras of width two [benjamins2020locally], in this paper we establish
that for any n < ω there exists an infinite (n + 1)-generated Heyting algebra Hn

whose n-generated subalgebras are of size ≤ mn for some mn < ω (Theorem 21).
It follows that the variety generated by Hn fails to be locally finite, although it is
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n-finite. For n = 2 this provides a negative answer to Bezhanishvili and Grigolia’s
question.

This result was first established in 2020, although it never appeared in print
[martins2023locally]. Independently, the first and fourth authors discovered an
alternative simpler proof in 2023 [hyttinen2023varieties]. To make the result
available, we decided to publish the latter together.

2. Esakia Duality

In this section, we will review the Esakia duality [Es74, esakia] between Heyting
algebras and Esakia spaces. We start by fixing some notation: whenever (X,≤) is
a poset and Y ⊆ X we let

Y ↑ = {x ∈ X | ∃y ∈ Y and y ≤ x} and Y ↓ = {x ∈ X | ∃y ∈ Y and y ≥ x}.
For x ∈ X, we write x↑ and x↓ for the sets {x}↑ and {x}↓ respectively. A subset
Y ⊆ X is said to be an upset when U = U↑. We write Up(X) for the set of upsets
of a poset X. Also, given any subset Y ⊆ X we write Y c for its complement XrY .

We recall that an Esakia space is a triple X = (X, τ,≤), where (X, τ) is a
compact topological space and (X,≤) a poset satisfying the following conditions:

(i) Priestley separation axiom: For all x, y ∈ X such that x � y, there is a
clopen upset U such that x ∈ U and y /∈ U ;

(ii) If U is clopen, then also U↓ is clopen.

Given Esakia spaces X and Y , an Esakia morphism p : X → Y is a continuous map
satisfying the two following conditions:

(i) For all x, y ∈ X if x ≤ y, then p(x) ≤ p(y);
(ii) For all x ∈ X and y ∈ Y such that p(x) ≤ y, there exists z ∈ X such that

x ≤ z and p(z) = y.

Esakia duality is a dual categorical equivalence between the category of Heyt-
ing algebras with homomorphisms and the category of Esakia spaces with Esakia
morphisms, which generalizes Stone duality. We shall review the definition of the
two contravariant functors (−)∗ and (−)∗ witnessing Esakia duality. On the one
hand, with every Heyting algebra H we associate an Esakia space H∗ as follows. A
prime filter F of H is a proper filter for which x ∨ y ∈ F entails x ∈ F or y ∈ F .
Then the Esakia space H∗ is obtained by endowing the poset of prime filters of H
ordered under the inclusion relation with the topology generated by the subbasis

{φ(a) | a ∈ H} ∪ {φ(a)c | a ∈ H},
where φ(a) is the set of prime filters of H containing a. Furthermore, every ho-
momorphism h : H → H ′ between Heyting algebras is associated with the Esakia
morphism h∗ : H ′∗ → H∗ defined as h∗(F ) = h−1[F ]. On the other hand, with
every Esakia space X we associate a Heyting algebra X∗ as follows. Let ClUp(X)
be the set of clopen upsets of X. Then

X∗ = (ClUp(X),∩,∪,→, ∅, X),

where → is defined by letting U → V = ((U r V )↓)c. Furthermore, every Esakia
morphism p : X → Y is associated with the homomorphism p∗ : Y ∗ → X∗ defined
as p∗(U) = p−1[U ].

3. Poset Colourability

We will rely on the following concepts. The first item in the next definition ex-
emplifies the idea of a back and forth system, and can also be seen as a version of the
notion of layered bisimulation from [visser1996uniform]. The connection between
back and forth systems and types goes back to Fräıssé [fraisse1954quelques].



STRICTLY N-FINITE VARIETIES OF HEYTING ALGEBRAS 3

Definition 1. Let X be a poset and G ⊆ Up(X).

(i) For every n < ω we define recursively an equivalence relation ∼Gn on X as
follows: for every x, y ∈ X,

x∼G0 y ⇐⇒ ∀g ∈ G (x ∈ g ⇐⇒ y ∈ g);

x∼Gn+1y ⇐⇒ ∀z ≥ x ∃v ≥ y (z∼Gn v) ∧ ∀v ≥ y ∃z ≥ x (z∼Gn v).

Moreover, we consider the following equivalence relation on X:

∼Gω =
⋂
n∈ω
∼Gn .

(ii) The n-type and the ω-type over G of an element x ∈ X are, respectively,
the sets

{y ∈ X | x∼Gn y} and {y ∈ X | x∼Gω y}.
(iii) We say an element x ∈ X is G-isolated if x∼Gω y entails x = y.
(iv) We say that X is G-coloured (or coloured by G) if every element of X is

G-isolated.

Lemma 2. Let X be a poset. For every G ⊆ Up(X) and n < ω, the equivalence
relation ∼Gn+1 refines ∼Gn .

Proof. We proceed by induction. For n = 0 we assume x�G0 y. Without loss of
generality there is some g ∈ G such that x ∈ g and y /∈ g. Since g is an upset, it
follows that z ∈ g for every z ≥ x but y /∈ g, showing x�G1 y.

For n = m + 1 assume x�Gn y. Without loss of generality there is some z ≥ x
such that for all v ≥ y it holds z�Gn−1v. Hence, by the induction hypothesis, we

obtain z�Gn v and therefore x�Gn+1y. �

By a term we understand a first-order term in the language of Heyting algebras.

Definition 3. The implication rank rank(φ) of a term φ is defined as follows:

(i) If φ is a constant or a variable, then rank(φ) = 0;
(ii) rank(ψ ∧ χ) = max{rank(ψ), rank(χ)};
(iii) rank(ψ ∨ χ) = max{rank(ψ), rank(χ)};
(iv) rank(ψ → χ) = max{rank(ψ), rank(χ)}+ 1.

Let H be a Heyting algebra. Given a subset G ⊆ H, we denote by 〈G〉 the
subalgebra of H generated by G. We recall that the universe of 〈G〉 is

{φH(~g) | ~g ∈ G and φ is a term},
where φH(~g) is the interpretation of φ in H under the assignment ~g.

Definition 4. Let X be an Esakia space and G = {gi | i < k} ⊆ X∗. The
implication rank rank(U) of an element U ∈ 〈G〉 is

min{rank(φ) | φ is a term such that U = φX
∗
(g0, . . . , gk−1)}.

In addition, with every U as above we associate a term φU (x0, . . . , xk−1) such that
U = φX

∗

U (g0, . . . , gk−1) and rank(U) = rank(φ).

The following lemma and the subsequent Colouring Theorem generalize [grilletti2023esakia]
and are essentially a reformulation of [bezhanishvili2006lattices]. The relation
between the implication rank of a term and the existence of a back-and-forth system
of corresponding length was established in [visser1996uniform].

Lemma 5. Let X be an Esakia space and x, y ∈ X. The following condition holds
for every finite G ⊆ X∗:

x∼Gn y ⇐⇒ ∀U ∈ 〈G〉 with rank(U) ≤ n : (x ∈ U ⇐⇒ y ∈ U).
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Proof. We fix an enumeration G = {gi | i < k} and let ~g = (g0, . . . , gn−1). More-
over, given a term φ(x0, . . . , xn−1), we will write φ(~g) as a shorthand for φX

∗
(~g).

Both implications in the statement will be proven by induction on n.
(⇒) For the case where n = 0, suppose that x∼G0 y and consider U ∈ 〈G〉 such

that rank(U) = 0. Then we may assume that φU is a meet of joins of constants
and variables. If φU = 0 or φU = 1, then U = ∅ or U = X and the claim follows
immediately. On the other hand, if φU = gi for some i < k, we have that x ∈ gi if
and only if y ∈ gi by the definition of ∼G0 . As φU is a meet of joins of constants
and variables, this implies that the claim holds.

Then we consider the case where n = m+1. Suppose that x∼Gm+1y and consider
U ∈ 〈G〉 such that rank(U) ≤ m+1. First suppose that rank(U) ≤ m. By Lemma 2
we have x∼Gmy and, therefore, the claim holds by the induction hypothesis. Then we
consider the case where rank(U) = m+1. We may assume that φU is a conjunction
of disjunctions of terms of the form α → β of implication rank ≤ m + 1 and with
variables among x0, . . . , xn−1.

For each of these implications α→ β, let

Uαβ := α(~g)→ β(~g) = ((α(~g)r β(~g))↓)c.

We will show that x ∈ Uαβ if and only if y ∈ Uαβ . By symmetry, it suffices to prove
the implication from right to left. Accordingly, suppose x /∈ ((α(~g)rβ(~g))↓)c. Then
there is some z ≥ x such that z ∈ α(~g) r β(~g) and, since x∼Gm+1y, there is some

v ≥ y such that z∼Gmv. As α(~g), β(~g) ∈ 〈G〉 and rank(α(~g)), rank(α(~g)) ≤ m, we
can apply the induction hypothesis obtaining v ∈ α(~g)r β(~g). Hence, we conclude
that y /∈ ((α(~g)r β(~g))↓)c = Uαβ .

Since U is a meet of joins of sets of the form Uαβ , the claim follows from the fact
no Uαβ separates x and y.

(⇐) For the case where n = 0, suppose that x�G0 y. Without loss of generality,
we may assume that there is some gi ∈ G such that x ∈ gi and y /∈ gi. Since
rank(gi) = 0, the claim follows immediately.

For the case where n = m + 1, suppose that x�Gm+1y. We may assume that

there is z ≥ x such that for all v ≥ y we have z�Gmv. By the induction hypothesis,
for every v ≥ y, there is either ψv(~g) ∈ 〈G〉 such that z ∈ ψv(~g) and v /∈ ψv(~g), or
χv ∈ 〈G〉 such that z /∈ χv(~g) and v ∈ χv(~g), with rank(ψv), rank(χv) ≤ m. We let

I0 := {v ∈ y↑ | z ∈ ψv(~g) and v /∈ ψv(~g)};

I1 := {v ∈ y↑ | z /∈ χv(~g) and v ∈ χv(~g)}.

By construction we have y↑ = I0 ∪ I1. Then we define

Z :=
⋂
v∈I0

ψv(~g)→
⋃
v∈I1

χv(~g) = ((
⋂
v∈I0

ψv(~g)r
⋃
v∈I1

χv(~g))↓)c.

Notice that by the previous direction the number of terms of rank ≤ m is finite,
whence the intersections and unions above are finitary and thus Z is a well-defined
element of 〈G〉. Furthermore, rank(Z) ≤ m+ 1 because each ψv and χv has impli-
cation rank ≤ m. Therefore, to conclude the proof, it suffices to show that x /∈ Z
and y ∈ Z.

Since for every v ∈ I0 we have z ∈ ψv(~g) and for every v ∈ I1 we have z /∈ χv(~g),
it follows that z ∈

⋂
v∈I0 ψv(~g)r

⋃
v∈I1 χv(~g). As x ≤ z, we obtain

x /∈ ((
⋂
v∈I0

ψv(~g)r
⋃
v∈I1

χv(~g))↓)c = Z.

To prove that y ∈ Z, suppose the contrary. Then there is some w ≥ y such that
w ∈

⋂
v∈I0 ψv(~g)r

⋃
v∈I1 χv(~g). As w ≥ y and y↑ = I0∪I1, either w ∈ I0 or w ∈ I1.
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If w ∈ I0, then w /∈ ψw(~g). While if w ∈ I1, then w ∈ χw(~g). In both cases, we
obtain w /∈

⋂
v∈I0 ψv(~g)r

⋃
v∈I1 χv(~g), a contradiction. �

Let X be an Esakia space and G ⊆ X∗. In view of Esakia duality, the subalgebra
〈G〉 of X∗ is proper if and only if the relation

R = {〈x, y〉 ∈ X ×X | x ∈ U iff y ∈ U, for every U ∈ 〈G〉}
differs from the identity relation on X (see, e.g., [bezhanishvili2006lattices]).
As a consequence, we deduce:

Lemma 6. Let X be an Esakia space and G ⊆ X∗. Then X∗ = 〈G〉 if and only if
for every x, y ∈ X,

{U ∈ 〈G〉 | x ∈ U} = {U ∈ 〈G〉 | y ∈ U} implies x = y.

In view of the next result, the concept of subalgebra generation can be studied
through that of colouring.

Colouring Theorem 7. Let X be an Esakia space and G ⊆ X∗ finite. Then
X∗ = 〈G〉 if and only if X is G-coloured.

Proof. (⇒) To prove that every element of X is G-isolated, it suffices to show that
for every pair of distinct x, y ∈ X we have x�Gω y. Accordingly, consider two distinct
x, y ∈ X. By symmetry we may assume that x � y. The Priestley separation axiom
implies that there is U ∈ X∗ such that x ∈ U and y /∈ U . From the assumption
that X∗ = 〈G〉 it follows that U ∈ 〈G〉. By Lemma 5 we obtain that x�Gn y for
n = rank(U). Therefore, the definition of ∼Gω guarantees that x�Gω y.

(⇐) By Lemma 6 it suffices to prove that if x, y ∈ X are such that {U ∈ 〈G〉 |
x ∈ U} = {U ∈ 〈G〉 | y ∈ U}, then x = y. Together with Lemma 5, the assumption
that {U ∈ 〈G〉 | x ∈ U} = {U ∈ 〈G〉 | y ∈ U} implies x∼Gω y. Since X is G-coloured,
we conclude that x = y. �

4. The counterexamples

Our aim is to construct for each n < ω an infinite (n + 1)-generated Heyting
algebra whose n-generated subalgebras are of size ≤ mn for some mn < ω. We will
do this by exhibiting their dual Esakia spaces Xn.

Definition 8. For every n < ω, let Xn = (Xn, τ,≤) be the ordered topological
space where

Xn = {xli | l ≤ 2n and i < ω} ∪ {x∞},
τ = {U ∈ P(Xn) | if x∞ ∈ U , then U is cofinite},

and ≤ is the unique partial order with minimum x∞ such that for every xli, x
l′

i′ ∈ Xn,

xli ≤ xl
′

i′ ⇐⇒ either i ≥ i′ + 2 or (i = i′ + 1 and l′ 6= l + 1).

Lastly, for each i < ω we let Lin = {xli | l ≤ 2n} and we refer to this as the i-th
level/layer of Xn.

Notice that X0 is the dual of the Rieger-Nishimura lattice, i.e., the one-generated
free Heyting algebra [Ni60, Ri49]. On the other hand, X2 is depicted in Figure 1
as an exemplification.

Lemma 9. For every n < ω, Xn is an Esakia space.

Proof. First, Xn is compact because it is the Alexandroff extension of the count-
able discrete space Xnr{x∞}. To prove that the Priestley separation axiom holds,
consider x, y ∈ Xn such that x � y. Then x differs from the minimum x∞. Con-

sequently, x↑ is finite and omits x∞. It follows that x↑ is a clopen upset which,
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Figure 1. The Esakia space X2

obviously, omits y. It only remains to prove that the downset of a nonempty clopen
set U is clopen. Since U is open and nonempty, the definition of the topology
guarantees that U contains an element of the form xli. Therefore, U↓ contains
Xn r (L0

n ∪ · · · ∪Li+1
n ). It follows that U↓ is cofinite and contains x∞, whence it is

clopen. �

Henceforth, we will identify natural numbers with finite ordinals, i.e., we identify
each natural number n < ω with the set {m ∈ ω | m < n}.

Definition 10. Let X be an Esakia space.

(i) A colouring of X is a function c : n→ X∗ where n < ω and X is coloured
by c[n];

(ii) X is said to be n-colourable if there is a colouring c : n→ X∗.

The following is an immediate consequence of the Colouring Theorem 7:

Proposition 11. An Esakia space X is n-colourable if and only if X∗ is n-
generated.

Consequently, in order to prove that X∗n is (n+ 1)-generated, it suffices to show
that Xn is (n+ 1)-colourable.

Proposition 12. The Esakia space Xn is (n+ 1)-colourable.

Proof. Since n < n + 1 there is an injection e : 2n + 1 → ℘(n + 1). Then let
c : n+ 1→ X∗n be the map defined by letting

c(k) = {xl0 ∈ Xn | k ∈ e(l)}.
By the definition of Xn we have

Xn = {x∞} ∪
⋃
i<ω

Lin.
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Therefore, to prove that Xn is (n+ 1)-colourable, it suffices to show that for every
i ∈ ω the points in Lin are all c[n + 1]-isolated. We proceed by induction on i,

noting that, by the definition of c and of ∼c[n+1]
0 , it is clear that every point in L0

n

is c[n+ 1]-isolated. Now, let i > 0 and assume that, for all j < i, every point in Ljn
is c[n+ 1]-isolated.

Let us first show that xli�
c[n+1]
ω xl

′

i , for every l 6= l′ ≤ 2n. By the construction
of Xn we can suppose, without loss of generality, that there exists z ∈ Li−1n lying

above xli but not above xl
′

i . As z is c[n + 1]-isolated by our induction hypothesis,

it follows that for all v ≥ xl
′

i , there exists mv satisfying z�c[n+1]
mv v. Take m :=

max{mv ∈ ω : v ≥ xl
′

i }, which exists, as (xl
′

i )
↑

is finite. By Lemma 2 we have that

z�c[n+1]
m v for every v ≥ xl′i . It is now clear that xli�

c[n+1]
m+1 xl

′

i , thus xli�
c[n+1]
ω xl

′

i .

Next we show that, given l ≤ 2n, then for every k > i and y ∈ Lkn, we have

xli�
c[n+1]
ω y. By the construction of Xn we know that xl

′

i > y, for some l 6= l′ ≤ 2n.
It follows from our induction hypothesis and from what we just proved above that

for every z ≥ xli, there exists mz ∈ ω such that z�c[n+1]
mz xl

′

i . As (xli)
↑ is finite,

taking m′ := max{mz ∈ ω : z ≥ xli} and applying Lemma 2 yields z�c[n+1]
m′ xl

′

i for

every z ≥ xli. Since xl
′

i ≥ y, this implies xli�
c[n+1]
m′+1 y, hence also xli�

c[n+1]
ω y.

Again using our induction hypothesis, we can now conclude that every point in
Lin is c[n+ 1]-isolated. �

Corollary 13. The Heyting algebra X∗n is infinite and (n+ 1)-generated.

Proof. Since Xn is infinite, the Heyting algebra X∗n is also infinite. Furthermore,
it is (n+ 1)-generated by Propositions 11 and 12. �

Therefore, it only remains to prove that the n-generated subalgebras of X∗n are
of size ≤ mn for some mn < ω. The proof of this fact will be based on the next
three technical lemmas.

Lemma 14. Let c : m → X∗n be a function and i, k < ω such that the following
conditions hold:

(i) |Lin/∼
c[m]
ω | ≤ k ≤ 2n;

(ii) For all x, y ∈ Li+1
n we have x∼c[m]

0 y.

Then |Li+1
n /∼c[m]

ω | ≤ k ≤ 2n.

Proof. By condition (i) we can enumerate Lin/∼
c[m]
ω as {Aj | j < k}. We say that

an element x ∈ Li+1
n sees some Aj when x ∈ A↓j .

Claim 15. If two elements of Li+1
n see the same Aj’s, then they have the same

ω-type.

Proof of the Claim. Consider x, y ∈ Li+1
n and suppose that they see the same Aj ’s.

We need to show that x∼c[m]
p y for every p < ω. The proof proceeds by induction

on p. The case where p = 0 holds by condition (ii). For the case where p = q + 1,

the induction hypothesis guarantees that x∼c[m]
q y. Then consider some z ≥ x. We

need to find some v ≥ y such that z∼c[m]
q v. If z = x, then we are done taking

v := y. Then we consider the case where x < z. If z ∈ (Li−1n )↑, the definition of
Xn and the assumption that x, y ∈ Li+1

n guarantee that y ≤ z, in which case we
take v := z. It only remains to consider the case where z ∈ Lin. Clearly, there
exists j < k such that z ∈ Aj . Therefore, x sees Aj and so does y by assumption.
Let v ∈ Aj be such that y ≤ v. As z, v ∈ Aj , the elements z and v have the same

ω-type, whence z∼c[m]
q v. �
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Now, observe that if Aj contains at least 2 elements of Lin, then every element of
Li+1
n sees Aj because of the structure of Xn. Furthermore, as Lin has 2n+1 elements

and the Aj ’s are exactly k ≤ 2n, we may assume without loss of generality that
Ak−1 contains at least 2 elements of Lin. Together with the Claim, this implies that
if two elements of Li+1

n see the same elements of {Aj | j < k − 1}, then they have
the same ω-type. As the structure of Xn guarantees that every element of Li+1

n sees

every Aj except possibly one, we conclude that Li+1
n /∼c[m]

ω has ≤ k elements. �

Lemma 16. For every function c : n → X∗n, there is j < ω such that at least two
elements in Ljn have the same ω-type and every element in (Lj+1

n )↓ has the same
0-type.

Proof. For each l < n, let Ul := c(l). We may assume without loss of generality
that every Ul is finite and nonempty, for otherwise the topology of Xn would yield
Ul = ∅ or Ul = Xn, in which case Ul does not contribute to distinguish between the
ω-type or 0-type of the elements of Xn. Furthermore, for each l < n we denote by
il the least i such that Ul ∩ Li+1

n = ∅, which exists because Ul is finite. Lastly, we
may assume without loss of generality that il ≤ il′ for each l < l′.

Claim 17. For each l < n, the number of distinct ω-types over c[l + 1] of the
elements of Liln is bounded above by 2l+1. Furthermore, every member of (Lil+1

n )↓

has the same 0-type over c[l + 1].

Proof of the Claim. From the definition of i0, . . . , il and the assumption that i0 ≤
· · · ≤ il it follows that (Lil+1

n )↓ ∩ (U0 ∪ · · · ∪Ul) = ∅. Therefore, the last part of the
claim holds. We prove the first part of the claim by induction on l.

Induction Base. We need to prove that the number of distinct ω-types over c[1] =
{U0} of the elements of Li0n is ≤ 2. It suffices to show that

(x ∈ U0 ⇐⇒ y ∈ U0) implies x∼c[1]ω y,

for every pair of distinct x, y ∈ Li0n . If i0 = 0, this is clear, as the sole possible
ω-types over {U0} of the elements of L0

n are U0 and {x ∈ Xn | x↑ ∩ U0 = ∅}. Then
we consider the case where i0 > 0. Clearly, if x, y ∈ U0, the ω-type over {U0} of
x and y is U0. Then we consider the case where x, y /∈ U0. If Li0−1n ⊆ U0, then

x, y /∈ U0, but x↑ r {x}, y↑ r {y} ⊆ U0, so that x∼c[1]ω y. Then we consider the case
where Li0−1n * U0. By assumption there is an element z ∈ U0 ∩Li0n . The definition

of Xn guarantees that the set z↑ ∩ Li0−1n is either Li0−1n or Li0−1n r {v} for some
v ∈ Xn. Since z↑ ⊆ U0 and Li0−1n * U0, we obtain U0 ∩ Li0−1n = Li0−1n r {v} for
some v ∈ Xn. As x and y are distinct from z (because x, y /∈ U0 and z ∈ U0) and
z � v ∈ Li0−1n , the definition of Xn guarantees that x, y < v. As x, y, v /∈ U0 and

x↑ r {x, v}, y↑ r {y, v} ⊆ z↑ ⊆ U0, we conclude that x∼c[1]ω y as desired.
Induction Step. Suppose that the statement holds for l, i.e., that the number of

distinct ω-types over c[l + 1] of the elements of Liln is bounded above by 2l+1. We
will prove that also holds when l is replaced by l + 1. If il+1 = 0, this is clear, as

the sole possible ω-types over {U0, . . . , Ul+1} of the elements of L
il+1
n = L0

n are the
sets of the form

⋂
j∈J Uj ∩

⋂
j /∈J U

c
j for some J ⊆ l+ 1. Thus we may assume that

il+1 > 0.
We will prove that the number of distinct ω-types over c[l + 1] of the elements

of L
il+1−1
n is at most 2l+1, that is,

(1) |Lil+1−1
n /∼c[l+1]

ω | ≤ 2l+1.

We have two cases: either il < il+1 or il = il+1. Suppose first that il < il+1.
If il = il+1 − 1 we are done by the inductive assumption. Then we may assume
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that il < il+1 − 1. Recall that i0 ≤ · · · ≤ il < il + 1 ≤ il+1. Moreover, from the
definition of i0, . . . , il it follows

(U0 ∪ · · · ∪ Ul) ∩ (Lil+1
n )↓ = ∅.

Therefore, for each x, y ∈ (Lil+1
n )↓ it holds x∼c[l+1]

0 y. Consequently, the result
follows from the induction hypothesis and il+1 − il applications of Lemma 14. It
only remains to consider the case where il = il+1.

Let m be the greatest integer such that im < il = il+1, if it exists, or −1
otherwise. If m 6= −1, then m < l and by the induction hypothesis, the number of
distinct ω-types over c[m+ 1] of the elements of Limn is at most 2m+1. Since

(U0 ∪ · · · ∪ Uim) ∩ (Lim+1
n )↓ = ∅,

by the definition of the it’s and by the structure of Xn, it follows from il − 1− im
applications of Lemma 14 that |Lil−1n /∼c[m+1]

ω | ≤ 2m+1.
Now, for an arbitrary m satisfying the above definition, notice that if m <

k < l + 1, then ik = il = il+1. Again by the definition of the it’s, it follows
that, for any such k, we have that Ljn ⊆ Uk = c(k), for every j < il − 1. As
m < m+ 1 < l+ 1 because m < l, the ω-type of an element x of Lil−1n over c[l+ 1]
is totally determined by its ω-type over c[m+1] (of which there are none if m = −1,
and at most 2m+1 otherwise, by above) together with whether or not x belongs to
Uk, for each m < k < l + 1. Thus, there are at most 2m+1 · 2l−m = 2l+1 possible
ω-types over c[l + 1] that x ∈ Lil−1n can have, as desired. This concludes the proof
of condition (1).

To conclude the proof of the claim, it is convenient to separate the following
cases.

Case A. Suppose that L
il+1−1
n ⊆ Ul+1. This entails that the ω-types over c[l+ 2]

of the elements in L
il+1−1
n are the same as those over c[l + 1]. Hence, the elements

from L
il+1
n which see the same ω-types over c[l+ 1] from L

il+1−1
n also see the same

ω-types over c[l + 2] from L
il+1−1
n . Consequently, the ω-types over c[l + 2] of the

elements in L
il+1
n are determined by their ω-types over c[l + 1] (of which there are

at most 2l+1, by induction hypothesis and by possibly repeatedly applying Lemma

14 if il < il+1) together with whether or not they belong to the set Ul+1 ∩L
il+1
n , in

the sense that for x, y ∈ Lil+1
n ,

x∼c[l+2]
ω y ⇐⇒ x∼c[l+1]

ω y and x∼{Ul+1}
0 y.

This gives us at most 2l+2 possible ω-types over c[l + 2] for elements of L
il+1
n .

Case B. Suppose that L
il+1−1
n * Ul+1. Recall that Ul+1 ∩ L

il+1
n 6= ∅ by the

definition of il+1. Moreover, by the definition of Xn the upset generated by any pair

of distinct elements of L
il+1
n contains the whole L

il+1−1
n . Therefore, the assumption

that L
il+1−1
n * Ul+1 allows us to assume, without loss of generality, that L

il+1
n ∩

Ul+1 = {x0il+1
} and L

il+1−1
n ∩ Ul+1 = L

il+1−1
n r {x1il+1−1}. By condition (1), the

elements in L
il+1−1
n ∩ Ul+1 = {xtil+1−1 | t 6= 1} have at most 2l+1 different ω-types

over c[l + 1] and, since they all belong to Ul+1, they have at most 2l+1 different
ω-types also over c[l + 2].

Now, the definition of Xn guarantees that for every m > 0 we have that xmil+1
≤

x1il+1−1. Furthermore, xmil+1
does not belong to Ul+1 because L

il+1
n ∩Ul+1 = {x0il+1

}.
Therefore, the ω-type over c[l + 2] of an element of the form xmil+1

with m > 0 is
determined by the fact that xmil+1

does not belong to Ul+1 and by the elements of

L
il+1−1
n with distinct ω-types over c[l + 2] it sees. Since xmil+1

sees all but possibly

one of the element of L
il+1−1
n and the elements of L

il+1−1
n have at most 2l+1 different
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ω-types, this implies that

|Lil+1
n r {x0il+1

}/∼c[l+2]
ω | ≤ 2l+1 + 1.

Consequently,

|Lil+1
n /∼c[l+2]

ω | ≤ 2l+1 + 2 ≤ 2l+2,

thus finishing the proof of the claim. �

From the Claim it follows that the number of ω-types of the elements in L
in−1
n

over c[n] is bounded above by 2n. Since L
in−1
n has 2n + 1 elements, it follows that

at least two elements of L
in−1
n have the same ω-type. Moreover, the second part

of the Claim guarantees that every element of (L
in−1+1
n )↓ has the same 0-type over

c[n]. Thus, the statement holds for j := in−1. �

Lemma 18. Let c : m→ X∗n be a function and i < ω. Suppose two distinct elements
of Lin have the same ω-type over c[m] and that for every q > i the elements of Lqn
have the same 0-type over c[m]. Then every element of (Li+2n+1

n )↓ has the same
ω-type over c[m].

Proof. Since two distinct elements of Lin have the same ω-type over c[m] and all
the elements of Li+1

n have the same 0-type over c[m], then it follows from the

construction of Xn that x2
n

i+1∼
c[m]
ω xji+1 for some j < 2n. Therefore, the construc-

tion of Xn guarantees that the elements x2
n−1
i+2 and x2

n

i+2 see the same equivalence

classes of Li+1
n /∼c[m]

ω . Since by assumption x2
n−1
i+2 and x2

n

i+2 have the same 0-type

over c[m], this implies that x2
n−1
i+2 ∼

c[m]
ω x2

n

i+2. For the same reason, we have that

x2
n−2
i+3 ∼

c[m]
ω x2

n−1
i+3 ∼

c[m]
ω x2

n

i+3. By proceeding in this way, we obtain that every ele-

ment of Li+2n+1
n has the same ω-type over c[m]. Since for t ≥ i + 2n + 1 every

element of Ltn has the same 0-type over c[m], this is enough to conclude that every
element of (Li+2n+1

n )↓ has the same ω-type over c[m]. �

We are now ready to prove that the Esakia space Xn satisfies the desired prop-
erty:

Proposition 19. There exists mn < ω such that the n-generated subalgebras of
X∗n are of size ≤ mn.

Proof. We begin by the following observation.

Claim 20. There exists k < ω such that for every function c : n→ X∗n the number
of ω-types over c[n] of elements of Xn is ≤ k.

Proof of the Claim. Recall the definition of the integers i0, . . . , in−1 associated with
c in the proof of Lemma 16. In view of Claim 17 and the fact that each Liln has
2n + 1 elements, we obtain that for each il at least two elements of Liln have the
same ω-type over c[l + 1] and every point in (Lil+1

n )↓ has the same 0-type over
c[l+ 1]. Hence, it follows from Lemma 18 that all the elements of (Lil+2n+1

n )↓ have
the same ω-type over c[l + 1]. Furthermore, from the construction of Xn and the
definition of il it follows that the upset (Lil−2n )↑ (which is the emptyset if il ≤ 1) is
contained in Ul := c(l). Let us partition Xn as the union

(Lil−2n )↑ ∪ Lil−1n ∪ Liln ∪ · · · ∪ Lil+2n

n ∪ (Lil+2n+1
n )↓,

and note that the above discussion entails that the effect of the clopen Ul in the
determination of the ω-type over c[n] of a point x is trivial if x ∈ (Lil−2n )↑ ∪
(Lil+2n+1

n )↓, and noticeable only if x ∈ Lil−1n ∪ Liln ∪ · · · ∪ Lil+2n

n . Since each of
these (il + 2n) − (il − 2) = 2n + 2 layers has 2n + 1 many elements, we conclude
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that the clopen Ul can only contribute to distinguish at most (2n + 1)(2n + 2) + 2
ω-types over c[n] in Xn.

Since the il in the above argument was arbitrary, it now follows that each clopen
in c[n] = {U0, . . . , Un−1} can only contribute to distinguish at most (2n+1)(2n+2)+
2 ω-types over c[n] in Xn. Therefore, there are at most k := n[(2n + 1)(2n + 2) + 2]
distinct ω-types over c[n] in Xn. As this bound is independent of the choice of the
function c, we have found the desired uniform upper bound. �

In order to conclude the proof, it suffices to show that the n-generated subal-
gebras of X∗n are of size ≤ 2k, for in this case the statement holds for mn := 2k.
Suppose, on the contrary, that there is an n-generated subalgebra of X∗n containing
distinct elements U0, . . . , U2k . Moreover, let m < ω be such that rank(Ui) ≤ m for
every i ≤ 2k. Since every family of 2k + 1 distinct subsets of a set Y separates at
least k + 1 elements of Y , there are distinct x0, . . . , xk ∈ Xn that are separated by

U0, . . . , U2k . By Lemma 5 the elements x0, . . . , xk are unrelated by ∼c[n]m . By the

definition of ∼c[n]ω , this implies that x0, . . . , xk are also unrelated by ∼c[n]ω . There-

fore, there are k+ 1 distinct ω-types over c[n] (that is, x0/∼c[n]ω , . . . , xk/∼c[n]ω ), but
this contradicts Claim 20. �

5. The main result

Given a class K of similar algebras, we let

V(K) := the variety generated by K;

S(K) := the class of subalgebras of the members of K.

The aim of this section is to establish the main result of the paper, namely:

Theorem 21. For each n < ω, the variety V(X∗n) is strictly n-finite, i.e., it is
n-finite but contains an infinite (n+ 1)-generated algebra.

In particular, the variety V(X∗n) is n-finite, but not locally finite. For the case
where n = 2, this provides a negative answer to [bezhanishvili2005locally]. The
proof of Theorem 21 relies on the next observation [Be05k].

Proposition 22. Let K be a variety and V ar a set of variables. Moreover, let
{vi | i ∈ I} be a family of functions vi : V ar → Ai with Ai ∈ K such that for every
pair of terms ϕ and ψ with variables in V ar it holds that

K 2 ϕ ≈ ψ implies that there exists i ∈ I such that ϕAi(vi(~x)) 6= ψAi(vi(~x)).

Then the n-generated free algebra of K embeds into the direct product
∏
i∈I Ai.

As a consequence, we deduce:

Corollary 23. Let K be a class of similar algebras of finite type and n < ω. If the
cardinality of the n-generated members of S(K) is bounded above by some mn < ω,
then V(K) is n-finite.

Proof. Since the type of K is finite and the cardinality of the n-generated members
of S(K) is bounded above by some mn < ω, up to isomorphism there are only
finitely many n-generated algebras in S(K), all of whom are finite. We enumerate
them as H0, . . . ,Hk.

Now, consider the set of variables V ar := {x0, . . . , xn−1}. Clearly, if two terms ϕ
and ψ with variables in V ar differ when interpreted in the variety V(K), then there
exist some i ≤ k and a function v : V ar → Hi such that ϕHi(v(~x)) 6= ψHi(v(~x)).
Therefore, we can apply Proposition 22 obtaining that the free n-generated algebra
Fn of V(K) embeds into H := HV ar

0 × · · · × HV ar
k . Since both V ar and each Hi
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are finite, so is H and, therefore, Fn. As every n-generated member of V(K) is a
homomorphic image of Fn, we conclude that V(K) is n-finite. �

We are now ready to prove Theorem 21.

Proof. By Corollary 13 the Heyting algebra X∗n is infinite and (n + 1)-generated.
As X∗n ∈ V(X∗n), it only remains to prove that the variety V(X∗n) is n-finite. But
this is an immediate consequence of Proposition 19 and Corollary 23. �

Remark 24. In view of Theorem 21, for each n < ω there is an n-finite variety of
Heyting algebras that contains an infinite (n+ 1)-generated algebra. We will prove
that such a variety can be chosen finitely axiomatisable.

First, recall from Theorem 21 that V(X∗n) is n-finite. Therefore, there is some
m < ω such that every n-generated member of V(X∗n) has size ≤ m (for instance,
m can be taken to be the size of the free n-generated algebra of V(X∗n)). This
property can be expressed by a first-order sentence, namely,

θn = ∀(xi)i<n∃(yj)j<m (
( ∧
i<n

xi = yi
)
∧
( ∨
j<m

yj = 0
)
∧
( ∨
j<m

yj = 1
)
∧

( ∧
�∈{∧,∨,→}

∧
i,i′<m

∨
j<m

yi � yi′ = yj
))
.

Then let Σn be the set of universally quantified equations valid in V(X∗n). Since
V(X∗n) is a variety, it is axiomatized by Σn. Together with the fact that every
n-generated member of V(X∗n) has size ≤ m, this implies Σn |= θn (where |= stands
for the consequence relation of first-order logic). By the compactness theorem
there is a finite T ⊆ Σn such that T |= θn. Let V be the class of all the Heyting
algebras satisfying T . Clearly, V is a variety of Heyting algebras. Furthermore,
from T ⊆ Σn it follows immediately that X∗n ∈ V. Therefore, V contains an infinite
(n+ 1)-generated algebra, namely, X∗n (Corollary 13). Lastly, V is n-finite because
T |= θn and, therefore, every n-generated algebra in V is of size ≤ m.

Remark 25. From a logical standpoint, the importance of Heyting algebras is that
they algebraize the intuitionistic propositional calculus IPC in the sense of [BP89].
As a consequence, the axiomatic extensions of IPC (known as superintuitionistic
logics, or si-logics for short) form a lattice that is dually isomorphic to that of
varieties of Heyting algebras (see, e.g., [ChZa97]). Because of this, Remark 24 can
be rephrased as follows: for every n < ω there is a finitely axiomatisable si-logic that
has only finitely many formulas in variables x0, . . . , xn−1 up to logical equivalence,
but that has infinitely many nonequivalent formulas in variables x0, . . . , xn.
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